
Radiation damping of a quantum harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 4237

(http://iopscience.iop.org/0305-4470/20/13/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 17:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) 4237-4245. Printed in the U K  

Radiation damping of a quantum harmonic oscillator? 
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Abstract. Using a fully coupled oscillator model for the quantum mechanical description 
of a harmonically bound electron in a radiation field, exact results about the dissipative 
properties of the system in thermal equilibrium are derived. In particular one gets, without 
any additional assumption, the classical equation of motion of an oscillating electron 
damped by radiation and the scattering cross section of the system for incident light. 

1. Introduction 

A central harmonic oscillator linearly coupled to a non-self-interacting system of a 
large number of harmonic field oscillators yields an often considered model for the 
study of dissipative effects. The common interest in it results from its universal 
character. Its applications are, for example, Brownian motion, interaction of matter 
with a field (of quanta, like photons, phonons) and quantum noise. It gives an 
approximate description of physical systems such as the laser and the polaron. From 
a mathematical point of view the model has the great advantage of permitting an exact 
treatment, see [ 11 and references therein. However, most applications need the limit 
of an infinite number of field oscillators to be considered. The problem of renormalisa- 
tion then arises. Depending on the high-frequency behaviour of the spectral strength 
function, renormalisation may become inevitable in order to achieve finite expressions 
for observable quantities. This subtle point requires additional consideration, cf [2,3]. 

Recently the model has been used for the study of a harmonically bound electron 
in a radiation field [2-SI. For this system the model arises from minimal coupling of 
the electron to the free quantised electromagnetic field 

H = - [ p - e A ( x ) l Z + ~  1 m q2x2+f [E(y)2+B(y)21 d3y 2m 

by (i) retaining only the dipole interaction and (ii) neglecting the self-interaction term 
of the field. Hence the electron-field interaction is described by the momentum-(vector) 
potential coupling -(e/m)pA at the centre of motion of the oscillating electron. One 
recognises the simplified system as the special case of the so-called fully coupled 
oscillator where the central oscillator couples uniformly to the field oscillators, see (7).  

t On the occasion of the 60th birthday of Professor E Thoma. 
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In [2-51 this specified model has been treated exactly and explicit expressions for 
the partition function, the potential, kinetic and interaction energy in thermal equili- 
brium have been computed. Moreover, the state density of the system has been studied 
[3] showing the existence of a stable ground state and a line broadening of the excited 
states due to radiation. 

In the present paper we pursue these investigations. We are interested in the 
following questions. How does a harmonically bound electron behave, being in thermal 
equilibrium with the ever-present radiation field, if it is subjected to an external force? 
How does it return to equilibrium after a perturbation? Which is the dissipation of 
work done on the oscillating electron by a driving force? 

The following answers result from exact computations concerning the above model. 
A charged quantum oscillator, which is in thermal equilibrium with the surrounding 
radiation field, macroscopically behaves like a mechanical oscillator subjected to a 
mechanical friction. Left to itself it satisfies the equation of motion 

(1) 

where q = ( p (  t ) )  or q = (x( t ) )  and where 7 is the natural frequency of the oscillator. 
This holds true even in the case of zero temperature where the oscillator couples to 
the vacuum modes. The damping coefficient we derive 

q + yq + $4 = 0 

y = 2e2q2/(3mc3) (2) 

is a constant, independent of time and temperature. The expression (2) agrees with 
electrodynamical considerations where y describes the damping due to the emission 
of radiation by a classical charged oscillator, see e.g. [6 ,  (41.6)]. (It is also in accord 
with QED perturbation theory (cf also [3]) where y is the natural linewidth of the first 
excited state of a quantum oscillator.) 

A further characteristic quantity of the system we derive concerns the scattering 
cross section us for radiation. In thermal equilibrium the energy absorbed from an 
incident beam is re-emitted in all directions. For this scattering (=dissipative) process 
we get 

w 4  

( w 2 - ~ 2 ) 2 + y 2 0 2  (3) 

where w is the frequency of the incident radiation. This is well known from electro- 
dynamics, see e.g. [6, (41.8)]. 

The formulae (1)-(3), which typically refer to the phenomenon of energy dissipa- 
tion, are well known from classical physics, but no one has yet completely succeeded 
in giving a purely quantum mechanical explanation of them. One group of attempts 
starts with the classical equation of motion (1) and builds it into the Hamilton formalism 
in order to achieve a quantised version [7]. The difficulties which arise are either a 
time dependent oscillator mass or a violation of the uncertainty relations. Related to 
this approach is the introduction of non-linear terms into the Schrodinger equation 
which produce the right equation of motion for the expectation values [8], but it suffers 
from unstable stationary solutions. A third approach makes use of a quantum Langevin 
equation where an outer stochastic force simulates the microscopic interactions with 
a system of a large number of degrees of freedom [9]. Moreover there are many other 
attempts which we do not mention here. For an exhaustive review we refer to [lo] 
and the literature cited therein. 
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A stochastic modelling of thermal and quantal fluctuations (as, e.g., mentioned 
above) provides a phenomenological description of damping. In [ 113 it is shown that 
a consistent stochastic modelling based on phenomenological considerations is pos- 
sible. The basic assumptions in [ 111 are: ( i )  the expectation value of the position ( q ( t ) )  
satisfies the classical irreversible equation of motion (1 )  and (ii) its response function 
coincides with the generalised susceptibility for the underlying quantum processes. 
The damping constant y has the meaning of an effective (phenomenological) parameter 
which remains unspecified. Following the formalism, the Matsubara suceptibility 
(which is the central entity in this context) is derived from the generalised susceptibility 
due to a function theoretical one-to-one correspondence. Thus all autocorrelation 
functions are at hand. (For a comparison between some corresponding formulae 
presented here and in [ll] one has to interchange position and momentum variables 
and substitute m for (Mu:)-’, since in our model, resulting from minimal coupling, 
not the position but the momentum couples to the environment.) 

We are interested in a microscopic understanding of the basic assumptions (i) and 
(ii) of the above phenomenological approach. A model which is well suited for this 
purpose is the oscillator-heat-bath model already mentioned. It has been studied by 
Ullersma in a series of papers and, more recently, has been thoroughly revisited in 
[l]. Our Hamiltonian H, equation ( 7 ) ,  treated in § 2 follows also from a special case 
of that model. It is closely related to the case characterised by Ullersma’s spectral 
function (see below), which has often been considered in the literature, e.g. [l, 12, 131. 
Let us discuss this relation in some detail and then indicate the point to which we 
intend to make our specific contribution. For infinitely many field oscillators the 
spectral strength of ( 7 )  becomes y ( w )  = (2/7r)yw24(w),  where y is a constant given 
by (2) and I,(w) is equal to 1 for w not greater than the cutoff frequency w ,  and zero 
elsewhere. The quadratic growth is a consequence of the physical fact that the electric 
charge couples uniformly to the modes of the electromagnetic field. The cutoff is due 
to a Debye regularisation and has to be put to infinity afterwards. For H to have a 
finite lower bound the positivity condition must be satisfied which is q 2 >  ( 2 / 7 r ) y w , .  
This requires a finite cutoff. Only in the weak coupling limit, where the fine structure 
constant e2(hc ) - ’  or, equivalently, y tends to zero, is the cutoff allowed to tend to 
infinity. The corresponding limiting case for Ullersma’s spectral strength 
( 2 / 7 r ) ~ a ~ w ~ ( a ~ + w ’ ) - ’ ,  i.e. the case where K tends to zero and a obeys q 2 > a ~ ,  
indicates that the central oscillator approaches the motion of damped oscillations with 
the damping coefficient y, see § 7 of [ 13. However, even if the electromagnetic coupling 
in some cases may be regarded as weak compared with the binding force of the central 
oscillator, the crucial problem is not touched thereby. For any non-zero coupling 
strength the theory depends on an almost arbitrary parameter, namely w ,  (correspond- 
ing to a in Ullersma’s spectral strength). It cannot be put equal to infinity because 
of the occurrence of infinite energies and divergencies related to them, which are traced 
back to the already mentioned uniformity of the electromagnetic coupling. In order 
to get unambiguous results one has to get rid of this parameter. The problem is well 
known in QED and it is solved by the concept of renormalisation. The latter is inevitable 
in order to get observable finite differences in energies and, even in the case of 
convergence, to take account of the observable (not the bare) physical parameters. 
The renormalisation of the mass we shall perform is well known, e.g. from the theory 
of the natural linewidth. In the present case, besides the mass, the zero of the energy 
has also to be redefined. The latter causes a shift of the ground state from infinity to 
a finite value, see [2 ,3 ]  and 0 4. As a consequence the kinetic and the potential energy 
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or, equivalently, the dispersions of the momentum and the position become finite. Let 
us mention that this is the context in which the divergency of the position dispersion 
in the stochastic model [ 113 can be physically understood. After renormalisation the 
limit w,-+co is performed. The results thus derived are valid without restrictions on 
the coupling strength and the temperature. 

Closely related to our approach are [ 12, 131. In [ 121 a fully coupled oscillator (or 
an even more general) potential with coupling constants c, and frequencies w, of the 
field oscillators is discussed. In order to get a well defined friction coefficient my it 
is assumed that X u ( m , w t ) - ' c t w - ' 6 ( w  - m u )  is constant, equal to (2/7r)my. Indeed, 
this assumption leads to (1). But it is by no means evident that it can be satisfied. In 
fact a solution arises from the model considered here in the limit of infinitely many 
field oscillators after having performed the renormalisations indicated above. In [ 131 
a renormalisation of the mass and the frequency are considered but not carried through. 
So the dynamical equation of motion (1) of the damped oscillator does not strictly 
follow but only approximately with its validity restricted to small damping and certain 
frequency regimes. 

In the following we get a clear-cut derivation of dissipation for an exactly solvable 
quantum mechanical model. The well known model is simple but nevertheless physi- 
cally reasonable. The main tool used to obtain the results is a twofold renormalisation 
adopted from well known procedures in QED. Without any further assumptions it 
follows among others that the classical irreversible equation of motion (1) of a linearly 
damped oscillator emerges from a fully microscopic model. 

The method we apply is functional integration. By averaging out the variables of 
the field oscillators one gets an effective action Seff depending on a cutoff frequency 
U, .  To get rid of the latter, two renormalisations have to be performed: (i)  a mass 
renormalisation and (ii) a redefinition of the zero mark of the potential energy. Then 
the remaining path integral can be done yielding the reduced partition function Z,(p) 
at the inverse temperature p of the central oscillator. It is a functional of the outer 
generalised force F which couples linearly to the momentum or the position of the 
oscillator, giving rise to the additional term YF, where Y = p and Y = x respectively, 
to the Hamilton operator. Because of the quadratic form of the action one has 

where Z,(p), i.e. the partition function for F = 0, has been computed in [2,3]. From 
the Matsubara susceptibility 

Mjk(T)=(h Tr y)-'Tr(YU,YkUp-,) 

where 

U,: =exp(-TH/h) O S T G p  

the generalised susceptibility 

ajk(t):= -2 Im Mjk(ir)e(r) =(i / f i ) ( [  y J ( t ) ,  Yk(0)])pe(r) 

follows by analytic continuation. By the fluctuation-dissipation theorem and linear 
response theory one gets the crucial relation 
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which yields the macroscopic behaviour under the influence of the external force. As 
a consequence the time average of the work done per unit time on the central oscillator 
by a monochromatic force Fo cos w t  is given by 

2. Reduced partition function 

The Hamiltonian under consideration is 

Here m, 7 and e denote the mass, frequency and charge of the central oscillator x, 
p .  It couples to the one-dimensional field oscillators xko, Pku with frequencies wk. The 
orthonormal polarisation vectors ukv, U = 1,2, are perpendicular to the lattice vectors 
k corresponding to the finite quantisation volume a. p is a constant introduced for 
dimensional reasons only. H arises from minimal coupling of a harmonically bound 
electron to free radiation field [2-51. Following [2,3], the effective action for the 
central oscillator is found to be 

averaging out the field variables. The cutoff frequency w ,  comes in replacing E,, with 
S ~ ( ~ T C ) - ~  Xu sin 4 d 4  d q  w 2  dw. To get rid of it a renormalisation has to be carried 
out. It is convenient to perform the mass renormalisation already now. It amounts to 
the substitution 

[ I  -4e2w,(3.rrmc3)-']m-'+ m-' (9) 
cf [2,3] for details. We point out that the generalised force F in (8) couples to the 
momentum of the electron. According to (4) one gets for the reduced partition function 

where the Matsubara susceptibility is a scalar since H is isotropic. Explicitly one gets, 
essentially by minimising (8), cf [ 5 ] ,  

m m  
M"""'( T)  = - C ( K ,  + v',/ T ~ ) - '  exp( -iv; T )  

p n=--10 

with 

Kn:= l+4e2v , (3m") - '  tan-' ( w , / v n )  KO:= 1 v, := 2.rrnlp.  
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Performing the limit wc+ 03 and summing up the resulting series [ 14, (14.3.1), (17.3.1)] 
one ends up with 

for 0 T p, where 
m 

P(x) := 1 ( - l ) k ( X + k ) - '  
k = O  

denotes the p function, and where we use the abbreviations 

p := pv(2.rr)-' cos cp := e2~(3mc3)- ' .  (13) 

The prefactor Z,(p) has to be renormalised before performing the limit W,+CO. To 
this the free energy or, equivalently, the internal or potential energy is shifted by 

-he2~2( . r rmc3) - '  In( l+  w , / q ) .  (14) 

The result for Z,(p) is given in [2,3], cf also [4,5]. 

mass renormalisation, the Matsubara susceptibility for the position satisfies 
Because of the commutation relation [H, p j ]  = ihmT2xj, which persists after the 

~ p o s  = (m2,.,4)-1fimom. (15) 

3. Generalised susceptibility, autocorrelation function 

As mentioned, from the Matsubara susceptibility the generalised susceptibility follows 
by analytic continuation, cf (4). The real part of M(it)  is equal to the symmetrised 
autocorrelation function 

c ( t ) : =  (1/2h)(( Y(t )Y(O)+ Y(0)  Y ( t ) ) ) p .  

The latter will reveal the timescales of decay of the correlations which are due to 
damping and thermal relaxation. 

Separating the real and imaginary part of M"""(it) one gets 

sin(tg sin cp)6(t)  mt) --r?lcosq amom( t )  = - e 

cmom( t )  = P""( I t I ) + P""( 1 t 1 ) 
sin Q 

with 
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From (15) it follows 

e-'" 'Os 'F sin(2cp - tq sin p)8(  t )  
1 

mq sin cp 
a"os( t )  = 

cPos( t )  = DPos( 1 ) + Tpos( I t I ) 
with 

Dpos(t):= (2mq sin cp)-'lcot(.irp eiv)lsin[-tq sin (p+2cp+arg(cot(~p eiv))]  e-'rcosv 
(19) 

T P O S (  t )  := - k3 e - ( 2 n l ! 3 ) k r  

'irqcp p4+  k4-2p2k2 cos 2cp 

First of all, one realises that the generalised susceptibilities are independent of the 
temperature (!) and satisfy the differential equation (1) with y equal to (2). By ( 5 ) ,  
the temporal behaviour of the expectation values q (  t )  = ( p (  f ) ) p  and q (  t )  := (x( t ) ) @  is 
given by 

amom/pos( t - s ) F (  s )  ds 1:- 
where F is a generalised external force coupling to the momentum and position 
respectively. In particular this means that after a temporally limited perturbation the 
system relaxes to equilibrium by a damped harmonic oscillation according to (1). 

The Fourier inverses of the generalised susceptibilities are 

1 q 2 ( q 2 - - w 2 ) + y 2 w 2  y w 3  
&"""(w) =- 2 + i -  (21 1 m q 2  ( w 2 -  q 2 ) 2 +  y w m q 2  ( w 2 -  q2)2+ y 2 w 2 '  

According to ( 6 ) ,  the imaginary parts of (20) and (21) determine the energy dissipation. 
In the case of an incident electromagnetic plane wave the interaction is approximately 
described by p A  or XE coupling at the centre of motion of the oscillating electron. 
The incident energy flux for the plane wave is the time-averaged Poynting vector, 
namely c /  Eo12(87r)-*. So the cross sections are 

for the p A  coupling 

w 4  
upos(  w )  = U 0  for the XE coupling 

( w 2  - q 2 ) 2 +  y2w2 
where uo:= ( 8 ~ / 3 ) e ~ ( m c ~ ) - ~  is the Thomson cross section for a free electron. It is 
apos that coincides with U,, equation (3). Around w = q, both (22 )  and (23) are very 
well approximated by a 0 q 2 [ 4 ( w  - T ) ~ +  y'1-l. Differences between (22) and (23) arise 
for small frequencies, since umom(0) = uo and upos(0) = 0, and for high frequencies, 
since umom(m) = 0 and u p o s ( ~ )  = uo. 

Concerning the symmetrised autocorrelation functions one recognises D as the 
damping term and T as the thermal decay term. In D only the phase and the amplitude 
depend on the temperature. The decay time is 2/y, which is independent of the 
temperature. The difference between Dmom and DPos essentially consists in an addi- 
tional phase. 
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For the momentum correlation the thermal decay time at finite temperatures is 
pl(27r).  At zero temperature (17) shows a different behaviour. One has 

cmom(t, p-'  = 0) 

x e x p ( - l t l v )  dx* 
x4 - 2x2 cos 2cp + 1 

2 
m q  cos cp -- 

IT 

In this case the asymptotic expansion of the thermal decay term reveals a merely 
algebraic decay: 

-(2/.lr)mq cos c p [ ( ~ t ) - ~ + ( 1 2  cos 2cp)(qt)-4+. . . I. 
At high temperatures cmom behaves like 

mq(2.rr sin cp)-'p-' sin( cp + I t I q sin cp) exp( - I t I q cos cp) 

i.e. the damped oscillation exceeds the thermal decay. Finally, 

3h(2m)- 'cmom(0) = (3/2)hq[(.rr sin cp)-'  Im glr(pciV) -(27rp)-'] 

which is the kinetic energy at thermal equilibrium, cf [4,5]. 

pl(27r).  At zero temperature (19) becomes 

cpos(t, p-'  = 0) = (2mq sin cp)-' sin(2cp - .lr/2-/ t I q sin cp)e-~"~cosu 

For the position correlation the thermal decay time at finite temperatures is also 

Again the thermal decay is merely algebraic: 

2 ( ~ m q ) - '  cos c p [ 6 ( q t ) - 4 + ( 2 4 0 ~ ~ ~ 2 c p ) ( q t ) - 6 + .  . . I .  
Like cmom, at high temperatures cPos essentially undergoes a damped harmonic 
oscillation 

( 2 7 "  sin cp)-'p-'  sin(cp - 1  tI q sin cp) exp(-l ti q cos 9). 

However, at zero time cpoS becomes infinite. We will discuss this point. 

4. Renormalisation of the potential energy 

As indicated in (13), we had to shift the potential energy in order to get a finite partition 
function Z,(p). However, the renormalisation of the potential energy is not yet 
accomplished by this. This follows from the fact that, as a function of the cutoff w, ,  
the Matsubara susceptibility Mpos at 7 = 0 diverges like (14) as w, tends to infinity (cf 
[5]), instead of yielding the potential energy (up to the factor + h m q 2 ) .  So it is not 
surprising that Mpos, equation (15) ,  has a singularity at T = O .  This singularity is the 
reason for cpos(0) not being finite. It is also responsible for another inconsistency we 
have not yet mentioned, namely the fact that apes does not vanish for t 1 0  as it should 
according to its definition (4). 
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Thus we are led to renormalise the potential energy removing the singularity of 
Mpos at T = O ,  which is 

-2( nmT)- '  cos cp[ C + ~ ( T T ) ] .  (26) 

C is Euler's constant. The choice of the constant term is consistent with (14). 

becomes finite, namely 

; h m ~ 2 c P o s ( 0 ) = t h ~ [ - ( ~ s i n c p ) - '  Im(e2"+(p ei'))+(2/n)coscp 1np-(2np)- ']  

which is the potential energy, cf [4,5]. 

The modifications arising from this renormalisation are, first of all, that cpos(0) 

Then, f hm772cPoS no longer vanishes for t + CO since the renormalisation term 

(3/n)h7? cos cp(C+lnl t I  77) 

increases. However, the latter stays small for a long time. Indeed, for the electron 
mass and the ultraviolet value r] = loi6 s-l, after one year it amounts to about one- 
millionth of the ground state energy ; h ~ .  

Finally, apes becomes continuous at t = 0 by the subtraction of the constant 
2( mT)-' cos cp for t > 0. The effect is only a constant shift of the centre of oscillation. 

Of course, [H, p j ]  = ihmq2x, is no longer valid. 
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